Reliability Evaluation of Conformal Coatings against Tin Whisker Growth

Objectives:
• To develop a test procedure for conformal coatings to assess effectiveness of tin whisker failure mitigation
• To characterize the degradation of conformal coating subjected to operating and storage conditions
• To develop a PoF model to evaluate the performance of conformal coating to prevent short failure by tin whisker growth

Background
• Tin whiskers are conductive crystals that can spontaneously grow from pure tin and high tin content alloy finishes.
• The major failure caused by tin whiskers is electrical shorting due to bridging between adjacent conductors.
• Conformal coating is a polymeric layer, that was designed to protect the surfaces from harsh environments such as mold, moisture, and chemicals.
• In terms of tin whisker mitigation, a conformal coating may prevent whiskers from contacting a coated surface and contain whiskers under the coated surface.

Two Observed Failures of Coating
• Silicone (SR) Coating Tests
 – Simple puncture observed
 – Dominate failure mode: Puncture Failure
• Urethane (UR) Coating Tests
 – Whiskers were contained before breaking out of the coating
 – Failure Mode: Adhesive and Puncture Failure
• Each failure mode was tested in two accelerated testing environments

Testing Approach
• Blister-type Testing
 – Due to the nature of the coating, a larger experimental whisker diameter can be used during testing
 – Advantages
 • Mimics tin whisker growth
 • Allows for quantitative comparison of rupture and adhesion strengths
 • Specimens can be subjected to accelerated testing environments

* Panashchenko, "Long Term Investigation of Urethane Conformal Coating Against Tin Whisker Growth", http://npp.nasa.gov/whisker/, July 2010
Adhesive Strength Testing

Crack propagation

Laser triangulation sensor

Compressed air

Pressure profile

PID controlled pressure regulator

Displacement data

3-axes stage

Displacement data

Laser sensor

Specimen

Adhesion Strength from Test Data

\[\Gamma = \left(\frac{P^4}{17.4Eh} \right)^{\frac{1}{4}} \]

\(\Gamma = 179 \, \text{J/m}^2 \)

Accelerated Testing:

Urethane

Mechanical Engineering Department, UMCP

Laboratory for Optomechanics and Micro/nano Semiconductor/Photonics Systems

Copyright © 2011 LOMSS

Flow Chart of Proposed Modeling Approach

Tin whisker Coating

Substrate Nucleation

Lifting and delamination (penetration)

Outward puncture

Ein whisker Coating

Substrate Nucleation

Lifting and delamination (penetration)

Outward puncture

START

- Contact analysis
- Indentation analysis

Redefine deformed configuration

Input

Stress/strain in coating

Peel/lifting force

Input

Fracture analysis

Buckling analysis

Input

Puncture

Whisker containment

Adhesion analysis

Normalized propagation \(\left(\frac{U_y}{r} \right) \)

Strain values are to be used to determine the condition of fracture.

Lifting force is to be used to determine the delamination of coating.

Preliminary FE Modeling of Nucleation

Nucleation

Mechanical Engineering Department, UMCP

Laboratory for Optomechanics and Micro/nano Semiconductor/Photonics Systems

Copyright © 2011 LOMSS